

Welcome

Coastal IFOA Monitoring Program 2023 Webinar 2: Fauna Monitoring

10°C

RECONYN

2 🛈

The webinar will start shortly

M 3/5

2022-11-06 22:07:59

Planning and Environment

NSW Forest Monitoring Steering Committee

Coastal IFOA Monitoring

Fauna monitoring program

Chris Slade: Senior Ecologist

Collaborative science program

NSW Forest Monitoring Steering Committee with independent experts and chaired by the NRC.

Cross-agency Technical Working Group(s) with independent experts

NSW Forest Monitoring Steering Committee

NSW

JH4	Aboriginal			
	Attairs	NSW		

Local Land Services

Planning and

Environment

THE UNIVERSITY OF

Report on annual basis and for 5year reviews.

Multi-scale & inquiry driven approach

(Designed to meet Protocol 38)

Landscape scale - multispecies, long-term occupancy trend

Species specific occupancy trends

Targeted question / issue research

To what extent do the Coastal IFOA conditions maintain species occupancy in the landscape?

To what extent do the conditions maintain the population status of focal species?

To what extent do the Coastal IFOA conditions maintain fauna species viability in the landscape?

To what extent are the species-specific management plans effective in maintaining the viability of that species?

How are koalas responding to conditions, including changes in tree retention rates, species, distribution and size?

Can technology improve the probability of detection for a range of species in forestry operations?

Program Development

- Targeted species selection
- Method assessment
- Pilot trial

Natural Resources Commission

NSW Coastal Integrated Forestry Operations Approval Monitoring Program

Fauna occupancy survey design May 2023

Natural Resources Commission

NSW Coastal Integrated Forestry Operations Approval Monitoring Program

Operational manual for fauna monitoring May 2023

Plot Establishment

Each Region

3 regions

100 Plots200 sub-plots3 devices per sub-plot (sites)

Upper north east Lower north east Southern

TOTAL 300 Plots – 600 subplots

Plot Selection

- Incorporated several long-term programs
 - Southern brown bandicoot Eden
 - ► Large forest owls Eden
 - ► Koala north coast
- Range of factors:
 - Disturbance histories
 - Landscape position
 - Site access / remoteness

Plot / Sub-plot

Plot = 2 sub-plots

On-Track

- Remote camera
- ► Ultrasonic sound recorder
- ► Audio sound recorder

Off-Track

- Remote camera
- ► Ultrasonic sound recorder
- Audio sound recorder

Sampling Regime

- ▶ 50 annual plots (100 sub-plots) / region / year
- 10 panel plots (20 sub-plots) {sampled once every 5 years}
- ► TOTAL = 60 / region
- Seasonal split
 - ▶ 45 plots (90 sub-plots) sampled each year in spring / region
 - ▶ 15 plots (30 sub-plots) sampled each year in autumn / region
- Annual total (East Coast CIFOA area) = 180 plots (360 sub-plots)
- > 300 plots (600 sub-plots) sampled over 5 years
- All devices set for 14 nights
 - Noting similar program underway in Pilliga for last 10 years

SiteID	Site Schedule	FY22_23	FY23_24	FY24_25	FY25_26	FY26_27
N_001	Annual	Spring	Spring	Spring	Spring	Spring
N_010	Annual	Spring	Autumn	Spring	Spring	Spring
N_100	Once Every 5 Years	• O	0	0	0	Spring
N_011	Annual	Spring	Spring	Autumn	Spring	Spring
N_012	Annual	Spring	Spring	Spring	Spring	Spring
N_013	Annual	Spring	Autumn	Spring	Spring	Spring
N_014	Annual	Spring	Spring	Spring	Spring	Spring
N_015	Annual	Autumn	Spring	Spring	Spring	Spring
N_016	Annual	Autumn	Spring	Spring	Spring	Spring
N_017	Annual	Spring	Autumn	Spring	Spring	Spring
N_018	Annual	Autumn	Spring	Spring	Spring	Spring
N_019	Annual	Spring	Spring	Spring	Spring	Spring
N_002	Annual	Autumn	Spring	Spring	Spring	Spring
N_020	Annual	Spring	Autumn	Spring	Spring	Spring
N_021	Annual	Spring	Spring	Spring	Spring	Autumn
N_022	Annual	Spring	Spring	Spring	Autumn	Spring
N_023	Annual	Spring	Autumn	Spring	Spring	Spring
N_024	Annual	Spring	Spring	Spring	Autumn	Spring
N_025	Annual	Spring	Spring	Spring	Spring	Autumn
N_026	Annual	Spring	Spring	Spring	Spring	Spring
N_027	Annual	Spring	Spring	Spring	Spring	Autumn
N_028	Annual	Spring	Spring	Spring	Autumn	Spring
N_029	Annual	Spring	Autumn	Spring	Spring	Spring
N_003	Annual	Autumn	Spring	Spring	Spring	Spring
N_030	Annual	Spring	Spring	Spring	Spring	Autumn
N_031	Annual	Spring	Spring	Spring	Autumn	Spring
N_032	Annual	Spring	Spring	Spring	Autumn	Spring
N_033	Annual	Spring	Spring	Spring	Spring	Spring
N_034	Annual	Spring	Spring	Spring	Spring	Spring
N_035	Annual	Spring	Spring	Spring	Spring	Spring
N_036	Annual	Autumn	Spring	Spring	Spring	Spring
N_037	Annual	Spring	Spring	Autumn	Spring	Spring
N_038	Annual	Spring	Spring	Spring	Spring	Autumn
N_039	Annual	Autumn	Spring	Spring	Spring	Spring
N_004	Annual	Spring	Spring	Spring	Autumn	Spring
N_040	Annual	Spring	Autumn	Spring	Spring	Spring
N_041	Annual	Spring	Spring	Autumn	Spring	Spring
N_042	Annual	Spring	Spring	Autumn	Spring	Spring
N_043	Annual	Spring	Spring	Spring	Spring	Spring
N_044	Annual	Spring	Spring	Autumn	Spring	Spring
N_045	Annual	Spring	Spring	Spring	Spring	Autumn
N_046	Annual	Spring	Spring	Spring	Spring	Autumn
N_047	Annual	Spring	Spring	Autumn	Spring	Spring
N_048	Annual	Spring	Spring	Spring	Autumn	Spring
N_049	Annual	Spring	Spring	Autumn	Spring	Spring
N_005	Annual	Spring	Spring	Autumn	Spring	Spring
N_050	Annual	Spring	Spring	Spring	Spring	Spring

SiteID	Site Schedule	FY22_23	FY23_24	FY24_25	FY25_26	FY26_27
N_065	Once Every 5 Years	0	Spring	0	0	0
N_066	Once Every 5 Years	0	Spring	0	0	0
N_067	Once Every 5 Years	0	Autumn	0	0	0
N_068	Once Every 5 Years	0	Autumn	0	0	0
N_069	Once Every 5 Years	0	Autumn	0	0	0
N_007	Annual	Spring	Spring	Spring	Autumn	Spring
N_070	Once Every 5 Years	0	Spring	0	0	0
N_071	Once Every 5 Years	0	() Autumn	0	0
N_072	Once Every 5 Years	0	() Autumn	0	0
N_073	Once Every 5 Years	0	() Autumn	0	0
N_074	Once Every 5 Years	0	() Spring	0	0
N_075	Once Every 5 Years	0	() Autumn	0	0
N_076	Once Every 5 Years	0	() Autumn	0	0
N_077	Once Every 5 Years	0	() Spring	0	0
N_078	Once Every 5 Years	0	() Spring	0	0
N_079	Once Every 5 Years	0	() Autumn	0	0
N_008	Annual	Spring	Spring	Spring	Spring	Autumn
N_080	Once Every 5 Years	0	() Autumn	0	0
N_081	Once Every 5 Years	0	(0 0	Autumn	0
N_082	Once Every 5 Years	0	(0 0	Autumn	0
N_083	Once Every 5 Years	0	(0 0	Spring	0
N_084	Once Every 5 Years	0	(0 0	Spring	0
N_085	Once Every 5 Years	0	() 0	Autumn	0
N_086	Once Every 5 Years	0	(0 0	Spring	0
N_087	Once Every 5 Years	0	(0 0	Autumn	0
N_088	Once Every 5 Years	0	(0 0	Autumn	0
N_089	Once Every 5 Years	0	(0 0	Autumn	0
N_009	Annual	Spring	Autumn	Spring	Spring	Spring
N_090	Once Every 5 Years	0	() 0	Autumn	0
N_091	Once Every 5 Years	0	(0 0	0	Autumn
N_092	Once Every 5 Years	0	() 0	0	Autumn
N_093	Once Every 5 Years	0	(0 0	0	Autumn
N_094	Once Every 5 Years	0	(0 0	0	Autumn
N_095	Once Every 5 Years	0	(0 0	0	Spring
N_096	Once Every 5 Years	0	(0 0	0	Spring
N_097	Once Every 5 Years	0	(0 0	0	Autumn
N_098	Once Every 5 Years	0	(0 0	0	Autumn
N_099	Once Every 5 Years	0	(0 0	0	Autumn

Remote Camera

- Reconyx Hyperfire
- Camera and bait station
- Lure Peanut butter / rolled oats / truffle oil / tuna oil

Target species:

Rufous Bettong, Long-nosed bandicoot, Southern brown bandicoot, Spottedtailed Quoll, Long-nosed Potoroo **MOTION** – All settings related to how your camera behaves when motion is detected are grouped under this menu item.

1) Motion Pictures – ON, off

- 2) Pictures Per Trigger 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- 3) Picture Interval RapidFire™, **1**, 2, 3, 4, 5, 6, 7, 8, 9<mark>, 10 seconds</mark>

4) Motion Videos – on, OFF

a) If On, Video Length – 5 sec, 10 SEC, Dynamic Length

5) Quiet Period – NO DELAY, 5s, 10s, 15s, 30s, 1m, 2m, 3m, 5m

6) Sensitivity - low, low/medium, medium, medium/high, HIGH, very high

Ultrasonic call recorder

Song meter mini bat

Time	Set from your devi	ce (Ipad or Iphone)
Ultrasonic settings	Recording Format	Full Spectrum
	Full Spectrum Sample	256 kHz
	rate	
	Minimum trigger	8 kHz
	frequency	
	Max recording length	15 secs
	Trigger window	2 secs
	Save noise files?	YES
	Left channel gain	12 dB
Location	Set to general region	Use pinpoint to set office
		location
	Time zone	UTC +10.00 or use the
		configurator app to set to
		your phone
Delay start	Off	
Schedule	Record bats 30 min befor	re sunset to 30 min after
	suni	rise
	Mode	Ultrasonic
	Start	Time 00:00
	Duty Cycle	Always
	End	Time 00:00

Target bat species

Eastern false pipistrelle, Eastern freetail bat, Greater broad-nosed bat, Southern myotis, Yellow-bellied Sheath-tailed bat

Audio call recorder

Song meter mini

Time	Set from your phone / ipad		
Acoustic settings	Sample rate	22050Hz	
	Max recording length	60 mins	
	Channel	Left	
	Left channel gain	18 dB	
	Right channel gain	18 dB	
Location	Crescent Head		
	Time zone	UTC +10.00 or use the configurator app to set to your phone	
Delay start	Off		
Schedule	Record birds/frogs 24 hours a day		
	Start	Time 00:00	
	Duty Cycle	Always	
	End	Time 00:00	

Target species:

Barking Owl, Masked Owl, Powerful Owl, Sooty Owl, Boobook Owl, Glossy Black-cockatoo, Brown Treecreeper, Rufous Scrub-bird, Varied Sittella, Grey-headed Flying Fox, Koala, Squirrel Glider, Sugar Glider, Yellow-bellied Glider

Sampling Protocols

Ensuring consistent equipment set up

Consistent data capture

Standard Operating Procedure

SONG METER MINI BAT

FIRMWARE VERSION - 34 - to be used until 2027 unless otherwise advised.

The Song Meter Mini Bat utilizes an ultrasonic microphone for recording bat calls. The Song Meter Mini Bat device will be set up and configured prior to field deployment for acoustic recording.

- The following is a quick set up method for the device in the office:
- 1 Remove the lid from the Song Meter Mini recorder
- Insert four or NiMH batteries and a 64 (128) GB SD card. 3 Switch the recorder's power switch to On.
- If the Bluetooth LED flashes red this indicates that the recorder's internal clock is not
- set. It will be set when pairing.
- Make sure Bluetooth is enabled on your mobile device. 6
 - Launch the app
- The Song Meter Mini bat will be detected by the app and will appear in the Recorders
- Press and hold the Pair button on the Song Meter Mini bat recorder for three seconds 8
- The Bluetooth LED on the recorder will blink green, indicating it is ready to pair In the app, tap the Pair icon when it appears in the Recorders screen. The recorder's
- details will turn green, indicating successful pairing. 10 A pop-up asks if you want to set the recorder's time zone to your mobile device's time
- cone. Tap Yes. Next, a pop-up asks the same about location. Tap Yes. After pairing, tap the Configure icon for the paired Song Meter Mini recorder in the
- Recorders screen. The Configuration Editor screen will open Select a preset recording schedule from the dropdown menu and make any desired setting changes. 12
- 13 The recording schedule and settings changes load onto the recorder after each
- change
- 14 Format data card
- 15 Ensure the Recorder Name is adjusted to the sub-plot name og C-001-off-BA for each
- 16 Tap the Unpair icon on the Recorders screen and the Song Meter Mini is now ready to

Corporal

NOTE: It is important that high quality, new lithium batteries must be used on each equipment deployment. Battery failure is a major cause of data loss in passive devices. Ensuring that you have a good battery management procedure is essential to ensuring good data quality and minimising the risk of having to redeploy <u>gear</u>.

Sonometer mini bat detector settings for the Fauna Monitoring

Time	Set from your device (Ipad or Iphone)			
Ultrasonic settings	Recording Format	Full Spectrum		
	Full Spectrum Sample rate	256 kHz		
	Minimum trigger frequency	8 kHz		
	Max recording length	15 secs		
	Trigger window	2 secs		
	Save noise files?	YES		
	Left channel gain	12 dB		
Location	Set to general region	Use pinpoint to set office location		
	Time zone	UTC +10.00 or use the configurator app to set to your phone		
Delay start	Off			
Schedule	Record bats 30 min before sunset to 30 min after sun			
	Mode	Uttrasonic		
	Start	Time 00:00		
	Duty Cycle	Always		
	End	Time 00:00		

Figure 8: Song Meter Mini Bat

In Census notes - add serial number of device being used. For subsequent seasons/years keep the sites the same just add new census and details

Page: Page 4 of 4
 Document ID: 022/12287
 Document Owner:
 Issue date: Sept 2023

 WARNING: a printed eopy of this document may be uncontrolled. Please verity this is the lafest version
 Proviner date: Sept 2027 or to use.

Species Specific programs

- Southern Brown Bandicoot Eden
- Yellow-bellied Glider Bago Plateau
- Smoky Mouse Eden
- Giant Burrowing Frog Eden
- Large forest owls Eden
- Hastings River Mouse northern tablelands
- Koala northern forests
- Greater Glider southern & northern tablelands
- Multiple flora species

Southern Brown Bandicoot & Long-nosed Bandicoot Annual site occupancy

HYPERFIRE 2 COVERT

CIFOA Fauna Occupancy Monitoring – Year 1 (2022/23)

Brad Law

With Leroy Gonsalves, Elsa Kohane, Glenyse Villanueva, Traecey Brassil, Isobel Kerr, Chris O'Loughlin, Emma Sawyers

Principal Research Scientist, NSW DPI Adjunct, Queensland University of Technology

4 December 2023

regional.nsw.gov.au

Fauna Occupancy Monitoring

T.

10

owl sites grouped by the percentage of the home-range (1500 m) that experienced severe fire (unburned, <50% severe, >50% severe). The grey vertical line on the x-axis between years 2014 and 2015 indicates the timing of the 2014 King Fire and therefore divides pre- and post-fire occupancy trajectories

Jones et al. 2021

Accounting for imperfect detection using detection history and covariates

Cost effective fauna monitoring - sensors for multiple species

- Cameras (established method)
- Ultrasonics (established method)
- Acoustics (emerging method)
 - Recognisers for individual species

Reconyx Infrared Trail Camera

Songmeter mini - acoustic and bat

Review Paper

Pairing camera traps and acoustic recorders to monitor the ecological impact of human disturbance

Rachel T. Buxton[®], Patrick E. Lendrum, Kevin R. Crooks, George Wittemyer

Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523-1474, USA

"passive acoustic monitoring (PAM) has emerged as a transformative tool for applied ecology, conservation and biodiversity monitoring" (Ross et al. 2023)

Functional Ecology

REVIEW 🖻 Open Access 💿 🗿

Passive acoustic monitoring provides a fresh perspective on fundamental ecological questions

Samuel R. P.-J. Ross X, Darren P. O'Connell, Jessica L. Deichmann, Camille Desjonquères, Amandine Gasc, Jennifer N. Phillips, Sarab S. Sethi, Connor M. Wood, Zuzana Burivalova

First published: 20 January 2023 | https://doi.org/10.1111/1365-2435.14275

Handling Editor Oscar Godoy

Acoustics workflow for monitoring

Gibb et al. 2019

FIGURE 1 A typical passive acoustic monitoring workflow

Stats – occupancy modelling to account for imperfect detection...model occupancy across landscape

Figure 1. The spectral structure of calls studied in this work. Each image has been extracted from a spectrogram – the x-axis represents time in seconds, the y-axis frequency (Herz), and the grey scale represents acoustic intensity. (a) Currawong *Strepera graculina*; (b) Beach Stone-curlew *Esacus neglectus*; (c) male Koala *Phascolarctos cinereus*; (d) Cane Toad *Bufo marinus*; (e) Asian House Gecko *Hemidactylus frenatus*; (f) Ground Parrot *Pezoporus wallicus*; (g) Eastern Whipbird *Psophodes olivaceus*; (h) female Koala *Phascolarctos cinereus*; (i) human speech, vowel; (j) Torresian Crow *Corvus orru*; (k) wind gusts; (l) canopy rain.

Spectrograms for different species have their own signature

AVIANZ – recogniser development and validation – open source, uses AI (CNN - neural networks)

Development of initial acoustic recognisers using AI

Koala Yellow-bellied glider Sugar glider Squirrel glider Powerful owl Sooty owl Masked owl Barking owl Boobook owl Grey-headed flying fox Glossy black cockatoo Gang gang cockatoo

^{31.152494}s - 01:39.056662 (01:07.904168) 144Hz - 12.331kHz (12.187kHz)

Sooty Owl

🔶 SOWL\b	ab26_new_2593_653349_201	90926_180413_30_0930_960	.wav								- 0	×
File Help												
20000		Aller and a second										+
0	lan manakatan sa manarah persi											-
-20000		NALE OF										^
40000												~
10.0647												+
9.0kHz												-
8.0kHz												1.0
7.0kHz												^
6.0kHz		PKL										
5.0kHz		1 Acres										
4.0kHz		Anna and										
3.0kHz		and the second										
2.0kHz		Vourseline.										
1.0kH2					1.1.1				1 1 1	1 1 1	1 1	1
Os	2s	4s	65	8s	10s	· ·	12s	14s	16s	18s	· ·	20s 🗸
+ - 🗆	<									_		>
-96		96 -96		-1				Normal V TE	1 ~ Mono		লি তি	\Box
	18	• •	-67	-					, mono			

Dingo

-₩- AviaNZ\dingo.wav File Help	-	o x
	and million to the method of the machine to an a second of the second of the second of the second of the second	+)
-20000		~
		+
10.0kHz		
9.0kHz		^
8.0kHz 7.0kHz		dish la
6.0kHz Recorded with iTop Screen Recorder		
<u>4.0kHz</u>		
3.0kHz		
2.0kHz		
1.0kHz		
0.0kHz		
0s 10s 20s 30s 40s	50s	×
		>
	1 Click to finish recording. Don't show th	his again.

V AnaScheme Bat Call Analysis System (updated 18/5/2010) - LB152324.02#

File View Output Window Help

#* Finished at: 21:03:27 **

Extracting pulses from D:/Documents and Settings/bradl/My Documents/batcalls/rachel/121008Brad_Vespadelus_ID/VDarl/Gwydir/Riv/LB182125.34# Extracting pulses from D:/Documents and Settings/bradl/My Documents/batcalls/rachel/121008Brad_Vespadelus_ID/VDarl/Gwydir/Riv/LB152324.02#

Untitletii								
1 🕫 🗣 :	9- 8-8- III	-		-				
ile	Folder	Species	Conf.	Date	Time	Location	Pulses	
LB182125.34#	D:\Documents	Vespadelus darl	77.78	02-10	20:49:42		31	
LB152324.02#	D:\Documents	Vespadelus darl	66.67	02-10	20:49:02		26	
LB160305.22#	D:\Documents	Vespadelus darl	60.00	02-10	08:02:59		8	
LB162006.10#	D:\Documents	Vespadelus darl	70.00	02-10	08:03:45		29	
LB162015.17#	D:\Documents	Vespadelus darl	100.00	02-10	08:03:55		26	
LB162030.44#	D:\Documents	Vespadelus darl	100.00	02-10	08:03:59		10	
LB170138.34#	D:\Documents	Vespadelus darl	81.82	02-10	08:04:09		32	

LB152324.02#

₩↑ ₩↓ 罰 ∔ & X </ F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 [↓ [↑ 🖻 🖻 Ε |||| 巻 🔪 5

Ready

🎁 start 🔰 🕼 🖻 🗖 🗿 🔁 🐼

🔯 Microsoft PowerPoint ... 🥂 💆 AnaScheme Bat Call ..

Bats - Anascheme

- Future analysis with AI? (DPI/DPE SoS project)

Acta Chiropterologica, 12(1): 231–245, 2010 PL ISSN 1508-1109 © Museum and Institute of Zoology PAS doi: 10.3161/150811010X504725

EN

Reliable automation of bat call identification for eastern New South Wales, Australia, using classification trees and AnaScheme software

MARIA D. ADAMS^{1,3}, BRADLEY S. LAW¹, and MATTHEW S. GIBSON²

¹Forest Science Centre, Industry and Investment NSW, PO Box 100, Beecroft NSW 2119, Australia
²Centre for Environmental Management, School of Science and Engineering, University of Ballarat, PO Box 663, Ballarat Victoria 3353, Australia
³Corresponding author: E-mail: maria.adams@y7mail.com

Cameras

- Mega-detector to remove images with no animals
- Image tagging in Exif-Pro software

Pilot studies to inform power and survey effort (# sites)

- Pilliga grid-based monitoring program: 2013-ongoing
- DPI Monitoring Feasibility study 2017
- CIFOA Pilots: 2021
- Pilot sampling effort required for detection probability of 0.9 for yellow-bellied glider:
 - 4 SM Mini = 10 nights (autumn), 6 nights (spring).
 - 1 SM Mini = 15 nights (autumn), 7 nights (spring).

Coastal IFOA fauna monitoring plots to support Coastal IFOA fauna monitoring program

Approx. 300 monitoring sites across CIFOA region

- Each site has2 subplots = total 600 subplots
- 150 sites remeasured every year
 - 50 in Upper North East subregion
 - 50 in Lower North East subregion
 - 50 in Southern and Eden subregions (combined)
- 30 sites measured once every five years
 - 10 per year in Upper North East subregion
 - 10 per year in Lower North East subregion
 - 10 per year in Southern and Eden subregions (combined)

5-YEAR ROTATING PANEL- 180 SITES PER YEAR

Year	Number of remeasured monitoring sites ¹	Number of rotating monitoring sites ²	Total number of monitoring sites per year
1	126 (spring) 24 (autumn)	9 (spring) 21 (autumn)	180
2	126 (spring) 24 (autumn)	9 (spring) 21 (autumn)	180
3	126 (spring) 24 (autumn)	9 (spring) 21 (autumn)	180
4	126 (spring) 24 (autumn)	9 (spring) 21 (autumn)	180
5	126 (spring) 24 (autumn)	9 (spring) 21 (autumn)	180
Total number of sites	126 (spring) 24 (autumn)	150	300

² Sites monitored every 5 years

Acoustics - raw data

>120,000 detections so far (<u>spring only</u>)

• 11 species

Species x Region	Number of detections	Number of sub-plots detected	Average of Naïve occupancy
Central	30923		
Koala	1851	49	0.64
Sugar Glider	1668	49	0.64
Boobook	24105	45	0.59
Glossy Black Cockatoo	102	26	0.34
Yellow-bellied Glider	590	26	0.34
Sooty Owl	37	14	0.18
Masked Owl	121	12	0.16
Powerful Owl	194	6	0.08
Grey-headed Flying fox	2216	5	0.07
Barking Owl	39	4	0.05
Squirrel Glider	0	0	0.00
Northern	37113		
Boobook	22985	29	0.97
Koala	1198	24	0.80
Sugar Glider	1428	23	0.77
Grey-headed Flying fox	7684	14	0.47
Yellow-bellied Glider	758	14	0.47
Powerful Owl	2658	13	0.43
Glossy Black Cockatoo	80	8	0.27
Sooty Owl	107	8	0.27
Squirrel Glider	171	8	0.27
Barking Owl	44	2	0.07
Masked Owl			****
Southern	53722		
Sugar Glider	1606	38	0.42
Boobook	49358	33	0.37
Powerful Owl	1579	33	0.37
Masked Owl	154	27	0.30
Sooty Owl	73	20	0.22
Glossy Black Cockatoo	328	15	0.17
Yellow-bellied Glider	599	9	0.10
Koala	25	1	0.01
Barking Owl	0	0	0.00
Grey-headed Flying fox	0	0	0.00
Squirrel Glider	0	0	0.00

Bats – raw data

~ 400,000 bat detections/passes!

19 species/taxa

Species	Number of detections	Num. sub- plots detected	Average of Naïve occupancy per sub-plot across regions/seasons
Vespadelus troughtoni/Vespadelus			
vulturnus/Vespadelus pumilus	82108	203	0.95
Chalinolobus gouldii	40652	303	0.93
Nyctophilus spp.	10016	303	0.93
Vespadelus vulturnus	24465	108	0.92
Ozimops ridei	9958	270	0.85
Miniopterus orianae oceanensis	<mark>33665</mark>	<mark>256</mark>	<mark>0.82</mark>
Austronomus australis	4878	244	0.77
Rhinolophus megaphyllus	25192	259	0.76
Chalinolobus morio	19583	234	0.75
Vespadelus darlingtoni	34149	219	0.69
Miniopterus australis	<mark>73735</mark>	<mark>200</mark>	<mark>0.69</mark>
Vespadelus regulus	26541	148	0.62
Scotorepens orion	9217	173	0.51
Scotorepens greyii/Scotorepens sp	1395	85	0.43
Micronomus norfolkensis	<mark>3063</mark>	<mark>113</mark>	<mark>0.34</mark>
Falsistrellus tasmaniensis	<mark>347</mark>	<mark>47</mark>	0.20
Saccolaimus flaviventris	<mark>806</mark>	<mark>59</mark>	0.19
Scoteanax rueppellii	<mark>437</mark>	<mark>26</mark>	0.09
Chalinolobus dwyeri	2482	14	0.08
Grand Total	402689	344	0.61

Cameras – raw data

- >14,000 detections with 1 min separation
- >21 species

	Number of		
Species	detections	Num. sub-plots detected	Average of Naïve occupa
odent	5295	193	0.76
bird	1393	176	0.70
ong-nosed Bandicoot	627	135	0.58
Swamp Wallaby	889	139	0.57
small Dasyurid	2323	141	0.56
Northern Brown Bandicoot	1069	91	0.49
Common Brushtail Possum	544	81	0.33
Superb Lyrebird	265	75	0.33
Southern Brown Bandicoot	101	23	0.31
Australian Brush-turkey	169	44	0.28
Short-eared Brushtail Possum	202	45	0.27
Common Wombat	145	37	0.24
Eastern Pygmy-possum	29	10	0.22
Nountain Brushtail Possum	97	14	0.19
Cat	223	47	0.17
ace Monitor	105	31	0.17
Red-necked Wallaby	52	12	0.12
Spotted-tailed Quoll	66	19	0.11
Brushtail possum	12	5	0.11
Red-necked Pademelon	47	15	0.10
ong-nosed Potoroo	36	20	0.10
Jnknown mammal	31	21	0.09
Short-beaked Echidna	42	22	0.09
Bandicoot sp.	4	4	0.09
Eastern Grey Kangaroo	24	12	0.08
Dingo/domestic dog	41	18	0.08
Red Fox	39	11	0.07
small mammal	16	13	0.07
Red-bellied Black Snake	2	2	0.06
Jnknown macropod	15	12	0.06
Jnknown	5	4	0.06
Koala	11	8	0.05
Common Ringtail Possum	27	10	0.05
European cattle	105	4	0.05
and Mullet	6	4	0.04
pat	1	1	0.04
Parma Wallaby	25	3	0.03
Australian Owlet-nightjar	5	3	0.03
eptile	7	2	0.03
Pig	7	4	0.03
Albert's Lyrebird	3	2	0.03
Brush-tailed Phascogale	2	2	0.03
Red-legged Pademelon	6	1	0.02
leer	1	1	0.02
Eastern Brown Snake	1	1	0.02
Rabbit	2	1	0.02
Horse	2	1	0.01

Modelling covariates (GIS-derived)

Variable	Description	Detection(p)	Initial Occupancy	Colonisation	Extinction
Sensor type	SM2, SM4, SM-mini, audiomoth	\checkmark			
Recogniser Version	Ecosounds version 1, Ecosounds version 2, AviaNZ (CNN15)	\checkmark			
Month	Month of survey	V			
Season	Year of survey	\checkmark			
Climate		\checkmark			
Lagged annual Rainfall	Total annual rainfall over previous 12 months (SILO interpolation), 500 m resolution	\checkmark	\checkmark	\checkmark	\checkmark
Lagged annual maximum temperature	Annual mean of the daily maximum temperature over previous 12 months (SILO interpolation), 500 m resolution	\checkmark	1	٧	4
Precipitation (long-term)	Anuclim, mean annual precipitation in 1 km & 500 m buffer		√		
Mean annual temperature (long-term)	Anuclim, mean annual temperature in 1 km & 500 m buffer		√		
Environmental			V		
DEM	Site elevation (m ASL), mean of 1 km & 500 m buffer		\checkmark		
Land tenure	State forest vs national park/reserve		\checkmark		
Soil fertility	Mean $\%$ of total phosphorous at 0 to 5 cm in 1 km $\&$ 500 m buffer		\checkmark		
Roughness (100)	Neighbourhood Topographical Roughness based on Standard Deviation of Elevation in circular 100 – m Neighbourhood Mean of roughness in 1 km buffer & 500 m buffer, 30 m resolution		1		
Topographic Position	Mean Topographic Index in 1 km buffer & 500 m buffer		\checkmark		
Landscape old growth	% area of mapped old growth in 1 km & 500 m buffer		\checkmark		
Landscape rainforest	% area of mapped rainforest in 1 km & 500 m buffer		\checkmark		
SMIPS	Soil Moisture Information Processing System (CSIRO); Index of moisture in the top 90 cm. 1 km resolution over previous 12 months		4	V	V
NDVI	NDVI value (mean July-September in survey year) in 1 km & 500 m buffer		\checkmark	\checkmark	V
Disturbance			\checkmark	\checkmark	\checkmark
Landscape heavy harvesting (< 5 years)	% area of heavy harvesting (<5 years) in 1 km & 500 m buffer		\checkmark	\checkmark	V
Landscape selective harvesting (< 5 years)	% area of selective harvesting (<5 years) in 1 km $&$ 500 m buffer		\checkmark	\checkmark	\checkmark
Landscape heavy harvesting (5-15 years)	% area of heavy harvesting (5 – 15 years) in 1 km & 500 m buffer		\checkmark	\checkmark	\checkmark
Landscape selective harvesting (5-15 years)	% area of selective harvesting (5 – 15 years) in 1 km & 500 m buffer		\checkmark	1	\checkmark
Landscape heavy harvesting (16-30 years)	% area of heavy harvesting (16 – 30 years) in 1 km & 500 m buffer		\checkmark	1	\checkmark
Landscape selective harvesting (16-30 years)	% area of selective harvesting (16 – 30 years) in 1 km & 500 m buffer		\checkmark	\checkmark	\checkmark
Landscape heavy harvesting (> 30 years)	% area of heavy harvesting (>30 years) in 1 km & 500 m buffer		1	1	V
Landscape selective harvesting (> 30 years)	% area of selective harvesting (>30 years) in 1 km & 500 m buffer		\checkmark	\checkmark	\checkmark
Landscape wildfire (high severity)	% area of high severity wildfire 2019/2020 Black Summer Fires in 1 km & 500 m buffer		1	1	V
Landscape wildfire (low severity)	% area of low severity wildfire 2019/2020 Black Summer Fires in 1 km & 500 m buffer		V	V	1

DPI acoustic monitoring from 2015-2021 in north-east NSW across 224 sites

Trend in north-east koala occupancy (public forests) (Law et al. unpubl. data)

- Koala occupancy relatively stable despite drought and unprecedented wildfire in 2019
- Extent of high severity fire corelated with local extinction probability

Yellow-bellied glider trend in NE public forests (Law et al. unpubl. data)

Initial occupancy in 2015

- Occupancy varied from~0.45-0.6
- 34 % decline in 2019

FMIP 1990s Baseline study: e.g. Yellow-bellied Glider (northern) (Kavanagh et al. 2021)

- Requires large tree hollows for denning, exudate feeding
- 292 detection sites and 1808 non-detection sites
- Detection varied with season
- Median occupancy was 0.39±0.05
- Important drivers for occupancy:

 Many (e.g. tenure, distance from stream (negative), NDVI (positive))

Summary: 2022/23 (Year 1)

- Massive multi-species dataset from acoustics, ultrasonics and cameras
- Seasonal sampling and regionalised data capture
- Provides a strong foundation for future monitoring of species trends
- Can be compared to the past:
 - DPI acoustics monitoring from 2015-2022 (analysis in progress)
 - FMIP baselines from the 1990s (Kavanagh et al. 2021)
 - WildCount for cameras on NPWS estate?
- Potential to be one of Australia's largest terrestrial fauna monitoring programs

Q&A

Dr Brad Law, Principal Research Scientist at the Forest Science Unit in the NSW Department of Primary Industries

Mr Chris Slade, Senior Ecologist for Hardwood Forests at the Forestry Corporation of NSW

Professor Philip Gibbons, Fenner School of Environment and Society at the Australian National University and an independent advisor on the NSW Forest Monitoring Steering Committee

Upcoming Webinars

Webinar 3: Forest Carbon - Forest carbon of NSW forests - 13 December 12.30-1.30pm Registrations are now open

To register please visit our website **<u>nrc.nsw.gov.au</u>** or LinkedIn profile "Natural Resources Commission"

Thank you for joining us today!

This webinar will be available shortly on the Commission's website nrc.nsw.gov.au

The Commission will post responses to unanswered questions on the Commission's website.

Any further questions or feedback please contact us nrc@nrc.nsw.gov.au NRC Webinar Survey: Fauna Monitoring

